1737 cm⁻¹ and C–O–C stretching vibrations at 1033– 1300 cm⁻¹) and of the CH, CH₂, and CH₃ groups $(\approx 729, 1300-1462, 2800-3000 \text{ cm}^{-1})$. The ¹H NMR parameters (CDCl₃) of the products of hexene-1 hydroethoxycarbonylation corresponded to the linear product containing the admixture of the branched one. The most weak-field range of the spectrum contained a quartet at 4.12 ppm (J = 7.3 Hz) assigned to the methylene group of the ethyl substituent. The protons of the adjacent methyl group resonated at 1.25 ppm (triplet, J = 7.3 Hz). The most upfield range of the spectrum contained the signals of the methyl group of the acid part (0.88 ppm, triplet, J = 5.3 Hz). The protons of the methylene group adjacent to the carbonyl one were found at 2.28 ppm (triplet, J = 7.3 Hz). The multiplet at 1.62 ppm was assigned to the methylene protons at the C^5 atom; other methylene groups (those at the C^2 , C^3 , and C^4 atoms) were assigned to the multiplet around 1.29 ppm. The admixture of the branched isomer (ethyl α -methylcapronate) was identified by the presence of the doublet signal of the methyl groups at the C⁵ atom at 1.13 ppm (J =6.8 Hz) and the multiplet signal of the methine proton at the C⁵ atom at 2.4 ppm (J = 8.0 Hz). The signals of other protons of the branched product were overlapped by those of the major linear product (ethyl enanthoate).

In summary, we observed high catalytic activity of the $PdCl_2(PPh_3)_2$ – PPh_3 – $AlCl_3$ three-component system containing $AlCl_3$ as the promotor in the reaction of hydroethoxycarbonylation of hexene-1 and octene-1. The reaction occurred with the formation of a pair of isomeric products: the linear and the branched ones. The optimal conditions of the reactions were elaborated, and the yield of the target products (isomeric esters) reached 84.6 (for hexene-1) and 93.8% (for octene-1).

EXPERIMENTAL

The following chemicals were used as received: hexene-1, octene-1, and dichlorobis(triphenylphos-phine)palladium (Sigma-Aldrich), anhydrous ethanol, aluminum trichloride, and carbon dioxide without special purification. Triphenylphosphine ("pure," Chemapol) was recrystallized from ethanol.

The experiments were performed without solvents, using a stainless-steel laboratory pressure reactor. The ratio of the isomeric esters (linear and branched) was determined by chromatography using an Agilent 7890A/5975C chromato–mass spectrometer (USA) (ionization by electron impact, capillary column HP- FFAP, column length 30 m, inner diameter 0.25 mm, nitroterephthalic acid modified with polyethylene glycol as the stationary phase).

IR spectra were recorded using a Nicolet 5700 singlebeam spectrometer (ThermoElectron Corporation, USA) at 400–4000 cm⁻¹. ¹H NMR spectra were recorded using a Bruker DPX 400 instrument.

Hydroethoxycarbonylation of hexene-1. A mixture of 6.637 g (7.89×10^{-2} mol) of hexene-1, 2.289 g $(4.97 \times 10^{-2} \text{ mol})$ of ethanol, 0.080 g $(11.42 \times 10^{-5} \text{ mol})$ of PdCl₂(PPh₃)₂, 0.180 g (6.85×10⁻⁴ mol) of PPh₃, and 0.122 g (9.14×10⁻⁴ mol) of AlCl₃ was charged into a 100 mL stainless steel reactor equipped with a stirrer and a carbon(II) oxide injecting device. The pressure reactor was sealed, deaerated by flushing with carbon(II) oxide for three times, and filled with carbon(II) oxide to a pressure of 10 at; then stirring and heating were switched on. The temperature was increased to 100°C during 1 h, the pressure was up to 25 at, and the reaction mixture was stirred under those conditions during 5 h. Then the vessel was cooled down to ambient, and the reaction mixture was separated by fractionation. Yield 7.0 g (84.6%) of a mixture of ethyl enanthoate and ethyl 2-methylcapronate (77.8 : 22.2). IR spectrum, v, cm⁻¹: 1737 (C=O), 1033–1300 [CH₂C(O)O], 729 (CH), 1300–1462 (CH₂), 2800–3000 (CH₃). Ethyl enanthoate. ¹H NMR spectrum (CDCl₃), δ, ppm: 4.12 g (2H, CH₃CH₂O, J = 7.3 Hz), 1.25 t (3H, <u>CH</u>₃CH₂O, J = 7.3 Hz), 0.88 t [3H, CH₃(CH₂)₅C(O)O, J = 5.3 Hz], 1.29 m [6H, CH₃CH₂CH₂CH₂(CH₂)₂C(O)O], 1.62 m [2H, CH₃(CH₂)₃CH₂CH₂C(O)O], 2.28 t [2H, $CH_3(CH_2)_4CH_2C(O)O, J = 7.3 Hz].$ Ethyl 2-methyl**capronate.** ¹H NMR spectrum (CDCl₃), δ, ppm: 1.13 d $[3H, CH_3(CH_2)_3CH(CH_3)C(O)O, J = 6.8 Hz], 2.4 m$ [1H, CH₃(CH₂)₃CH(CH₃)C(O)O].

Hydroethoxycarbonylation of octene-1 was performed similarly using 5.6 g $(5.02 \times 10^{-2} \text{ mol})$ of octene-1, 1.52 g $(3.3 \times 10^{-2} \text{ mol})$ of ethanol, 0.053 g $(7.59 \times 10^{-5} \text{ mol})$ of PdCl₂(PPh₃)₂, 0.119 g $(4.55 \times 10^{-4} \text{ mol})$ of PPh₃, and 0.081 g $(6.07 \times 10^{-4} \text{ mol})$ of AlCl₃. Yield 5.76 g (93.8%) of a mixture of ethyl pelargonate and ethyl 2-methylcaprylate (77.5 : 22.5). IR spectrum, v, cm⁻¹: 1738 (C=O), 1033–1260 [CH₂C(O)O], 740 (CH), 1340– 1462 (CH₂), 2868–2957 (CH₃).

ACKNOWLEDGMENTS

This work was financially supported by the Ministry of Education and Science of Kazakhstan (grant no. 2743/GF-4).